Saturday, 15 June 2024

Solution to Maths Problem no 5

To solve this problem, I looked up pi to several decimal places then worked it out by trial and error with the PL/SQL code below:

SQL> @pi

SQL> set serveroutput on

SQL> declare

 2  top number;

 3  bottom number;

 4  pi constant number := 3.141592654;

 5  ratio number;

 6  difference number;

 7  save_difference number := 1;

 8  save_top number;

 9  save_bottom number;

 10  save_ratio number;

 11 begin

 12  for top in 1..999 loop

 13   for bottom in 1..999 loop

 14    ratio := top/bottom;

 15    difference := abs(pi-ratio);

 16    if difference < save_difference then

 17     save_difference := difference;

 18     save_top := top;

 19     save_bottom := bottom;

 20     save_ratio := ratio;

 21    end if;

 22   end loop;

 23  end loop;

 24  dbms_output.put_line('Top: '||save_top);

 25  dbms_output.put_line('Bottom: '||save_bottom);

 26  dbms_output.put_line('Ratio: '||save_ratio);

 27 end;

 28 /

Top: 355

Bottom: 113

Ratio: 3.14159292035398230088495575221238938053 

PL/SQL procedure successfully completed. 

SQL>  

So there you have it. The best fractional approximation to pi with a 3 digit numerator and denominator is 355/113, which is accurate to 6 decimal places i.e. 3.141593.

Maths Problem no 5

3.14 and 22/7 are both approximations for pi (or π).

22/7 is a fraction with a 2 digit numerator and a 1 digit denominator.

Find the best fractional approximation for pi with a 3 digit numerator and denominator.

See answer

Solution to Sudoku no 732

Sudoku no 732 (Extreme)

Solve online with Sudoku Mood

Sudoku grader and solver

See answer

Friday, 14 June 2024

Solution to Maths Problem no 4

The answer is 548834.

I used the program below to work it out:

andrew@ASUS-Laptop:~/Maths_Problems$ cat problem4e.c
#include <math.h>
#include <stdio.h>
int main()
{
double a;
double b;
double c;
double d;
double e;
double f;
int abcdef;
for(a=1;a<=9;a++)
  {
  for(b=0;b<=9;b++)
    {
    for(c=0;c<=9;c++)
      {
      for(d=0;d<=9;d++)
        {
        for(e=0;e<=9;e++)
          {
          for(f=0;f<=9;f++)
            {
            abcdef=100000*a+10000*b+1000*c+100*d+10*e+f;
            if (abcdef==pow(a,6)+pow(b,6)+pow(c,6)+pow(d,6)+pow(e,6)+pow(f,6))
              printf("%d\n",abcdef);
            }
          }
        }
      }
    }
  }

return 0;
}
andrew@ASUS-Laptop:~/Maths_Problems$

I ran it as follows:

andrew@ASUS-Laptop:~/Maths_Problems$ ./problem4e
548834
andrew@ASUS-Laptop:~/Maths_Problems$ 

...then I checked the result:

andrew@ASUS-Laptop:~/Maths_Problems$ echo "5^6+4^6+8^6+8^6+3^6+4^6"|bc
548834
andrew@ASUS-Laptop:~/Maths_Problems$

Maths Problem no 4

Find a six digit positive integer abcdef where:

abcdef = a^6 + b^6 + c^6 + d^6 + e^6 + f^6.

See answer

Solution to Sudoku no 731

Sudoku no 731 (Diabolical)

Solve online with Sudoku Mood

Sudoku grader and solver

See answer

Wednesday, 12 June 2024

Solution to Maths Problem no 3

I worked this out using the program below. The solution is at the bottom of the page:

andrew@ASUS-Laptop:~/Maths_Problems$ cat problem1.c
#include <math.h>
#include <stdio.h>
int main ()
{
int abc;
int def;
double abcdef;
double square_root;
int solution;
for(abc=100; abc<=998; abc++)
  {
  def=abc+1;
  abcdef=(1000*abc)+def;
  square_root=trunc(pow(abcdef,0.5));
  if(pow(square_root, 2)==abcdef)
    {
    solution=abcdef;
    printf("%d\n",solution);
    }
  }
return 0;
}
andrew@ASUS-Laptop:~/Maths_Problems$ ./problem1
183184
328329
528529
715716
andrew@ASUS-Laptop:~/Maths_Problems$

Maths Problem no 3

Find all 6 digit integers ABCDEF such that:

(1) ABCDEF is a perfect square.

(2) DEF = ABC + 1.

See answer